RF/RMRS-98-277.UN

LOADING ANALYSIS FOR THE ACTINIDE MIGRATION STUDIES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

REVISION 0

September, 1998

ADMIN RECORD SW-A -002773

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1	Purpose	4
1.2	Scope	5
2.0	Study Area	5
3.0	Description of Data Sources	6
4.0	Approach	7
4.1	Calculation of Storm-Specific Loads and Annual Yields	7
5.0	Results	11
5.1	Quantification of Uncertainty	11
5.2	Unit Suspended Solids and Actinide Yields	19
5.3	Estimated Annual Soil Erosion	23
5.4	Actinide Yields for Extreme Hydrologic Events	23
5.5	Compliant Actinide Yields	23
5.6	Runoff Coefficients	26
5.7	Summary of Results	29
	5.7.1 Woman Creek Results	29
	5.7.2 South Interceptor Ditch Results	30
	5.7.3 Walnut Creek Results	30
5.8	Sensitivity Analysis	31
6.0	References	33
Anne	endices	35

LIST OF FIGURES

- 1. Surface Water Gaging Station Locations.
- 2. Estimated Annual Total Uranium and Total Suspended Solids Yields in Woman Creek.
- 3. Estimated Annual Total Plutonium and Americium Yields in Woman Creek.
- 4. Estimated Annual Total Plutonium and Americium Yields in the South Interceptor Ditch.
- 5. Estimated Annual Total Uranium and Total Suspended Yields in the South Interceptor Ditch.

- 5. Estimated Annual Total Uranium and Total Suspended Yields in the South Interceptor Ditch.
- 6. Estimated Annual Total Uranium and Total Suspended Solids Yields in Walnut Creek.
- 7. Estimated Annual Total Plutonium and Americium Yields in Walnut Creek.

LIST OF TABLES

- 1. Data Needs for Actinide Loading Analysis in Support of AMS Modeling Activities.
- 2. Activity to Mass Ratios for Selected Radionuclides for Conversion of Activity Data to Mass for Load and Yield Computation.
- 3. Number of Days with Measurable Precipitation.
- 4. Summary of Estimated Actinide and TSS Annual Total Yields for Woman Creek.
- 5. Summary of Estimated Actinide and TSS Annual Total Yields for the South Interceptor Ditch.
- 6. Summary of Estimated Actinide and TSS Annual Total Yields for Walnut Creek.
- 7. Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in Woman Creek.
- 8. Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in Walnut Creek.
- 9. Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in the South Interceptor Ditch.
- 10. Comparison of Estimated "Compliant" Maximum Annual Plutonium-239,240 Yields with Maximum Measured Yields for Each Water Year.
- 11. Runoff Coefficient Determination for Selected Woman Creek Gaging Stations.
- 12. Runoff Coefficient Determination for South Interceptor Ditch Gaging Stations.
- 13. Runoff Coefficient Determination for Selected Walnut Creek Gaging Stations.
- 14. Relative Sensitivity of Loading Calculations to Independent Variables.

1.0 INTRODUCTION

1.1 Purpose

This report presents actinide loading analysis results for surface water at the Rocky Flats Environmental Technology Site (Site) to support actinide transport modeling for the Actinide Migration Studies (AMS). The AMS mission is to investigate the mobility of plutonium (Pu-239, 240), americium (Am-241), and uranium (U) in the Site environment. The goal of the AMS is to answer the following questions in the order of urgency shown.

- 1. <u>Urgent</u>: What are the important actinide sources and migration processes that account for recent surface water quality standard exceedances?
- 2. <u>Near-Term</u>: What will be the impacts of actinide migration on planned remedial actions? To what level do sources need to be cleaned up to protect surface water from exceeding action levels for actinides?
- 3. <u>Long-Term</u>: How will actinide migration affect surface water quality after Site closure? In other words, will soil action levels be sufficiently protective of surface water over the long-term?
- 4. <u>Long-Term</u>: Estimate the long-term off-site actinide migration. How will it impact downstream areas (e.g. accumulation)?

These questions will be addressed by mathematical modeling of actinide transport processes designed to predict actinide loads attributed to known sources of actinides in the Site environment. Actinide loading information is needed to calibrate the models, verify modeling results, and evaluate the error of estimation for the models.

The actinide transport models will estimate the quantities of actinides transported to surface water via the environmental pathways listed below:

- Runoff / diffuse overland flow,
- Channeled surface water flow,
- Groundwater transport both saturated and unsaturated,
- Sub-surface stormwater flow, and
- Airborne transport.

This actinide loading analysis is focused on the channeled surface-water flow transport pathway.

1.2 Scope

Available surface water discharge and actinide activity data from Site monitoring programs were compiled to compute actinide loads on a storm-specific and annual basis. These data might reveal trends indicative of transport phenomena associated with changing hydrologic conditions (e.g. years with normal, higher than normal, or lower than normal precipitation). The loading analysis was done for Site watershed sub-basins, which are coincident with locations of stream gaging and runoff sampling stations.

The results of this analysis will be used to calibrate transport computer models to Site conditions, such as the U. S. Department of Agriculture (USDA) Watershed Erosion Processes Prediction (WEPP) model. Comparison of the loading and yield results contained herein to the WEPP model output will aid in calibration of the model input data.. For example, the WEPP model output includes the quantity of sediment that leaves the outlet of a watershed on an annual basis. This report includes estimates for the annual total suspended solids (TSS) yields measured at Site stream gaging stations, and these estimates will serve as target results for the WEPP model.

The runoff coefficient is a hydrologic parameter for predicting storm runoff using the Rational Method (Dunne and Leopold, 1978). The runoff coefficient describes the percentage of precipitation that will run off of a drainage basin as surface water. Runoff coefficients approach a value of 1.0 for impervious surfaces, such as paved roads and developed areas. Likewise, the runoff coefficients are typically much lower (e.g. 0.05 to 0.7) for natural surfaces. Estimated runoff coefficients will be used to calibrate the hydrologic components of the WEPP model. Runoff coefficients shown herein will be used so that the WEPP model may be predict a reasonable quantity of runoff.

2.0 Study Area

The study area includes the Woman Creek, Walnut Creek, and South Interceptor Ditch (SID) drainage basins, the SID being contained in the Woman Creek watershed (Figure 1). The study area includes the Site property from the west fence line to the east fence line, and extends east to higher order water bodies downstream from the Site. For some monitoring stations, data are limited or do not exist for reliable estimation of actinide loading to off-Site water bodies, but projections can be made based on monitoring done at the eastern-most (downstream) extent of the Site property.

3.0 Description of Data Sources

Data for this analysis were compiled from the following Site monitoring programs:

- Event-Related Surface Water Monitoring Program, 1991-1994;
- Industrial Area IM/IRA Monitoring Program, 1995-Present;
- Rocky Flats Cleanup Agreement (RFCA) Monitoring Program: 1996-Present; and
- Source Evaluation and Preliminary Mitigation Program: 1997-Present.

Automated stormwater monitoring equipment has been used since 1991 to collect stormwater runoff samples from three Site drainages: Rock Creek, Walnut Creek, and Woman Creek. The equipment for this activity consists of a continuously recording flow meter linked to an automatic water sampler, which draws a composite sample from the stream when the flow meter indicates that desired flow conditions exist (e.g. rising stream due to stormwater runoff). The equipment may be programmed to collect samples on either time-paced (e.g. one sample every 15 minutes) or flow-paced (e.g. one sample every 100 cubic feet) intervals. The instrumentation may be programmed in many different ways to collect water samples representing various hydrologic conditions such as: baseflow, runoff, or a combination of the two.

Since 1991, the Site has continually improved its ability to accurately measure stream discharge and stormwater runoff flows, with the most marked increases in accuracy occurring in 1994. Therefore, loading computations for years prior to 1994 should be regarded as estimations with considerable uncertainty. In a similar fashion, the minimum detectable activity (MDA) for actinides was reduced from approximately 0.08 picocuries per liter (pCi/L) to a range of 0.01 - 0.02 pCi/L over the same time frame. These are important qualifications of the data quality and comparability that might limit the usefulness of earlier (i.e. 1991-1993) data. Nonetheless, these data are shown herein for completeness.

Changes in sampling methodology from 1991 to the present also affect the accuracy and applicability of the loading computations. For example, from 1991-1992 sampling was focused on event-related (stormwater) monitoring, and samples were collected over the entire duration of stormwater runoff events. During 1993-1995, stormwater samples were collected on the rising portion of the stormwater runoff hydrograph to capture what is expected to be the poorest water quality during the first flush of the storm events, thereby increasing the possibility of detecting actinides in the surface water.

From 1991 to 1995, baseflow water-quality was virtually ignored because water-quality compliance monitoring results showed actinide activities below the Site-specific discharge standards, and often below the MDA at baseflow.

Initiation of the Rocky Flats Cleanup Agreement (RFCA) in 1996 brought changes to the monitoring program through the Integrated Monitoring Plan. Starting in 1996, the sampling has been done by continuous, flow-paced collection of composite water samples to provide measurement of flow-weighted water quality for all hydrologic conditions (e.g. baseflow as well as stormwater runoff). The continuous flow-paced samples provide the best representation of the annual total yields measured at each gaging station.

The data used for this study are from Site stream gaging stations shown on Figure 1. The data include the parameters listed in Table 1. The required resolution for the data, as determined in the Actinide Migration Study Data Quality Objectives (Kaiser-Hill, 1998) are also shown in Table 1. The data were compiled in ExcelTM spreadsheets for computation of the actinide loads.

4.0 Approach

The loading analysis was done to estimate the quantities of water, TSS, Pu-239,240, Am-241, and U that pass through and off of the Site property. The results of the analysis will be used to calibrate the WEPP erosion model to estimate actinide migration from erosion and sediment transport processes.

The data analyzed included continuous stream discharge and water-quality data. Each water-quality sample that was used had a corresponding average flow measured during collection of the sample. As mentioned previously, much of the monitoring data was for storm events, and only about ten percent of the storm events were sampled. These loads presumed to represent the poorest water quality and highest flows that are observed at the Site. Therefore, the computed loads and yields are positively skewed (i.e. biased toward larger than average loads and yields).

4.1 Calculation of Storm-Specific Loads and Annual Yields

Actinide and TSS loads were computed for each gaging station over the period of record with all available data using Equation 1. In order to put the actinide load and yield estimates into a form that is comprehensible, radionuclide activities were converted to mass using activity/mass ratios shown in Table 2 (Shleien, 1992).

Table 1.—Data Needs for Actinide Loading Analysis in Support of AMS Modeling Activities.

Parameter	Required Resolution for Analysis
continuous stream discharge	0.1 cubic feet per second (cfs)
plutonium-239,240 (Pu-239,240);	0.02 pCi/L
americium-241 (Am-241)	0.02 pCi/L
uranium-233,234 (U-233,234)	0.02 pCi/L
uranium-238 (U-238)	0.02 pCi/L
total suspended solids	10 mg/L
drainage areas tributary to each gaging station	0.5 acres
precipitation data	0.05 inch, 15-minute record

Table 2.—Activity to Mass Ratios for Selected Radionuclides for Conversion of Activity Data to Mass for Load and Yield Computation.

	Activity-to-Mass Ratio
Radionuclide	(Ci/g)
Plutonium-239,240	0.07
Americium-241	3.43
Uranium-233,234	6.2 X 10 ⁻³
Uranium-235	2.2 X 10 ⁻⁶
Uranium-238	3.4 X 10 ⁻⁷

Notes: 1) Uranium isotope activity to mass ratios are for natural uranium.

2) Ci/g = Curies per gram.

Equation 1: Load (mass transport / time) = $K \times Q \times [constituent]$;

where:

Load = a "mass flow," commonly called "flux" in units of

mass per unit time (e.g. μg/year);

K = a constant for appropriate unit conversion;

Loading Analysis for the Actinide Migration Studies at the Rocky Flats Environmental Technology Site

Q = stream discharge, in Liters / second; and

[constituent] = actinide (μ g/L) or TSS (mg/L) concentration.

Equation 1 is used to compute storm-specific loads using the average flow that is measured during collection of the stormwater sample. The minimum, mean, and maximum storm-specific loads were calculated for each gaging station.

The estimations of TSS and actinide loads at each gaging station were used to compute annual total yield (i.e. total mass) of TSS and actinides transported to each station (Equation 2). The yields may be compared spatially to locate actinide source and deposition (sink) areas.

Equation 2: $Y = K \times V_w \times [constituent]_{Ave}$

where:

 $Y = Constituent Yield (mass) (e.g. \mu g);$

K = Constant for appropriate unit conversion;

 V_w = Annual total water yield (Volume), in Liters; and

[constituent]_{Ave}= Average annual actinide (μ g/L) or TSS (mg/L) concentration.

Discharge and water-quality data for the May 17, 1995 flood, were included in this analysis for stations SW027, GS21, GS22, GS24, GS25, GS10, and SW093. The loading estimates from the May 17, 1995 event are representative of expected actinide transport during floods. The May 17, 1995 event was approximately a 15-year, 24-hour precipitation event that occurred during saturated soil conditions and produced runoff approximating a 50 to 75 year event (RMRS, 1995). The number of days per year with measurable precipitation are shown in Table 3.

5.0 Results

Summary statistics for actinide and TSS loads and annual total yields for each gaging station are shown in Appendices A-2 through A-8, Appendices B-1 through B-5, and Appendices C-1 through C-3. The level of detail in the analysis for each gaging station depended on the quantity of data available for each station. Annual total constituent yields for each gaging station are shown in Figures 2 through 7.

5.1 Quantification of Uncertainty

The uncertainty in the load and yield estimates may be computed using the uncertainties associated with measuring the actinide activity in the water samples, the TSS concentrations, and stream discharge to provide a range of expected values. An analytical error term is supplied with each radiochemical analysis. The analytical error represents two standard deviations from the expected mean activity for each sample, based on the *Poisson* Distribution. No error of estimate is supplied with the TSS data. Therefore, the error associated with these measurements was estimated by comparing field duplicate sample analysis results to determine a relative percent error of 12% (Appendix 1).

Discharge measurements at the Site are normally made using Parshall flumes, H-flumes, cutthroat flumes, v-notch weirs, and rectangular weirs. It is generally accepted by numerous authors that the error of Parshall flumes is about +/- 5%, and the error for weirs are estimated to be slightly less than Parshall flumes. There also is error in the calibration of the flow meters and in estimating discharge for periods with missing data. These errors cannot be specifically quantified. Therefore, for this study, the error term for all discharge measurements was estimated at +/- 10% to account for the error associated with the theoretical ratings for the primary devices (e.g. Parshall flume) and potential instrumentation errors.

It is assumed that the error terms are additive. Therefore, the overall uncertainties are calculated as follows.

Uncertainty of Load or Yield Calculation = \pm ($U_{constituent} + U_{Q}$)

where: $U_{constituent} = Uncertainty$ for radiochemical or TSS analysis, and

 U_Q = Uncertainty for stream discharge measurement.

Table 3.--Number of Days with Measureable Precipitation (Measured by Site Precipitation Gages)

Weter Veer	Days with Measureable
Water Year	Precipitation
1991	109
1992	83
1993	130
1994	127
1995	136
1996	120
Average:	118

Figure 2.--Estimated Annual Total Uranium and Suspended Solids Yields in Woman Creek

Figure 3.--Estimated Annual Total Plutonium and AmericiumYields in Woman Creek

4

Figure 4.--Estimated Annual Total Plutonium and Americium Yield in South Interceptor Ditch

MONITORING STATIONS IN DOWNSTREAM ORDER

Figure 5.--Estimated Annual Total Uranium and Suspdended Solids Yields in the South Interceptor Ditch

MONITORING STATIONS IN DOWNSTREAM ORDER

Loading Analysis for the Actinide Migration Studies at the Rocky Flats Environmental Technology Site

Figure 6.--Estimated Annual Total Uranium and Suspended Solids Yields in Walnut Creek

MONITORING STATIONS

Figure 7.--Estimated Annual Total Plutonium and Americium Constituent Yields in Walnut Creek

MONITORING STATIONS

The uncertainty data are labeled as error terms in Appendices A2 - A8, B1 - B5, and C1 - C3. The error terms associated with the actinide loads tend to be larger for smaller annual total loads, and vise-versa. This is due to the fact that the uncertainty, in the radionuclide activity measurements tends to decrease with increasing activity.

The same error terms associated with the calculation of storm-specific loads are also applied to the calculation of annual total yields. However, another error inherent in the yield calculation that is not quantified is embodied in the assumption that the constituent concentrations for stormwater runoff events represent average concentrations for all hydrologic conditions. The error associated with this assumption is not quantified. The runoff water is suspected to have greater constituent concentrations than at baseflow. Therefore, the yields presented herein represent maximum expected values.

5.2 Unit Suspended Solids and Actinide Yields

Annual TSS and actinide yields were computed on a unit drainage area basis for calibration and verification of the erosion and actinide transport models. Estimated annual unit yields are shown in Tables 4, 5, and 6 for Woman Creek, the SID drainage, and Walnut Creek respectively. The same drainage sub-basins used to compute the yields per unit acre should also be used for modeling transport processes to facilitate direct comparison of the monitoring results to WEPP erosion model results.

Table 4.-- Summary of Estimated Actinide and TSS Annual Total Yields for Woman Creek.

Based on Data Obtained 1991 - 1997
[Pu = Plutonium-239,240, Am = Americium-241, U = Total Uranium, TSS = Total Suspended Solids, pCi = picocuries, cm = centimeters]

		ESTIMATED ANNUAL TOTAL	ESTIMATED ANNUAL TOTAL	ESTIMATED ANNUAL
WOMAN CREEK		YIELD	YIELD / ACRE	SOIL EROSION DEPTH
GAGING			(Pu & Am in mg / acre,	IN DRAINAGE BASIN
STATION	CONCTITUENT	(Pu & Am in mg	, , ,	*
STATION	CONSTITUENT	U in g & TSS in kg)	U in g/acre & TSS in kg / acre)	(cm)
GS18	Pu	3	0.01	
Woman Creek	Am	6	0.013	
Below Old Landfill	Ü	41	0.082	
Drainage Area: 501 Acres	TSS	1,040	2	0.00003
GS16	Pu	5	0.03	
Antelope Springs Gulch	Am	6	0.05	
at Fire Break Road	U	34	0.25	
Drainage Area: 135 Acres	TSS	7,440	55	0.0009
GS17	Pu	1,490	2	
Woman Creek Above	Am	396	0.50	
Pond C-1	U	325	0.41	
Drainage Area: 800 Acres	TSS	41,309	52	0.00085
GS07 / SW029	Pu	43	0.05	
Woman Creek at	Am	181	0.22	
Pond C-1 Outfall	Ü	593	0.74	
Drainage Area: 806 Acres	TSS	2,020	3	0.00004
2.2252722. 000710/03	.50	2,320	3	
GS14	Pu	3	0.003	
Woman Creek above	Am	2	0.002	
Mower Diversion	U	529	0.59	
Drainage Area: 893 Acres	TSS	686	1	0.00001
GS01 + GS02	Pu	38	0.02	
Woman Creek & Mower Ditch	Am	105	0.068	
at Indiana Street	U	2,621	1.70	
Drainage Area: 1545 Acres	TSS	2,265	11	0.00002

Table 5.-- Summary of Estimated Actinide and TSS Annual Total Yields for the South Interceptor Ditch.

Based on the Data Obtained 1991 - 1997
[Pu = Plutonium-239,240, Am = Americium-241, U = Total Uranium, TSS = Total Suspended Solids, pCi = picocuries, cm = centimeters]

SOUTH INTERCEPTOR DITCH GAGING STATION	CONSTITUENT	ESTIMATED ANNUAL TOTAL YIELD (Pu & Am in mg U in g & TSS in kg)	ESTIMATED ANNUAL TOTAL YIELD / ACRE (Pu & Am in mg / acre, U in g/acre & TSS in kg / acre)	ESTIMATED ANNUAL SOIL EROSION DEPTH IN DRAINAGE BASIN (cm)
GS21	Pu	1	0.47	
IA Runoff from Cactus and 7th	Am	1	0.31	
Near Bldg. 664	U	2	1	
Drainage Area: 2.66 Acres	TSS	271	102	0.002
GS22	Pu	4	0.25	
Bldg. 460 Runoff and Footing Drain	Am	12	1	
Discharge to SID	U	34	2	
Drainage Area: 14.1 Acres	TSS	5,657	401	0.01
GS24	Pu	1	0.22	
Bldg. 881 and 850 Runoff to	Am	0	0.07	
881 Hillside	υ	1 1	0.22	
Drainage Area: 5.84 Acres	TSS	333	57	0.001
GS25	Pu	1	0.18	
East Bldg. 881 and 891 Hillside	Am		0.10	
Runoff with 881 Sump Flows	Ü	7	1	
Drainage Area: 6.7 Acres	TSS	401	60	0.001
SW027	Pu	447	2	
South Interceptor Ditch (SID)	Am	78	0.42	
at Inflow to Pond C-2	U	250	1	
Drainage Area: 186 Acres	TSS	2,654	14	0.0002

Table 6.-- Summary of Estimated Actinide and TSS Annual Total Yields for Walnut Creek.

Based on the Data Obtained 1991 - 1997 [Pu = Plutonium-239,240, Am = Americium-241, U = Total Uranium, TSS = Total Suspended Solids, pCi = picocuries, cm = centimeters]

		ESTIMATED	ESTIMATED	
		ANNUAL	ANNUAL	ESTIMATED
		TOTAL	TOTAL	ANNUAL
WALNUT CREEK		YIELD	YIELD / ACRE	SOIL EROSION DEPTH
GAGING		(Pu & Am in μg	(Pu & Am in μg / acre,	IN DRAINAGE BASIN
STATION	CONSTITUENT	U in g & TSS in kg)	U in g/acre & TSS in kg / acre)	(cm)
GS10	Pu	281	2	
South Walnut Creek Above	Am	268	1	
B-Series Bypass	U	78	0.43	
Drainage Area: 180 Acres	TSS	20,185	112	0.002
SW093 / GS13	Pu	330	1	
North Walnut Creek Above	Am	311	1	
A-Series Bypass	U	784	3	
Drainage Area: 249 Acres	TSS	38,148	153	0.003
	_			
GS03	Pu	131	0.13	
Walnut Creek at	Am	99	0.10	
Indiana Street	U	2,061	2.1	
Drainage Area: 987 Acres	TSS	12,264	12.425	0.0002

5.3 Estimated Annual Soil Erosion

The expected depth of annual soil erosion was estimated for the Woman Creek, Walnut Creek, and SID drainage basins by dividing the unit TSS yield by an assumed average soil bulk density of 1.5 grams / cubic centimeter (g/cm³). This bulk density compares well with a previous investigation that measured soil bulk density to range from 1.1 to 2.4 g/cm³ (Webb et al, 1993).

The estimated annual soil erosion depths ranged from about 0.0001 millimeters (mm) in Woman Creek to 0.3 mm in Walnut Creek. Annual soil erosion in the SID drainage basin was estimated to be about .02 mm. Again, these values are influenced by large yields measured in 1995 and thus represent maximum values based on limited data. A previous study by Webb et al (1993) concluded that the annual erosion in Woman Creek was approximately 1.80 mm. This value was determined by comparing Pu-239,240 activity in Site soils in 1974 to Pu-239,240 activity measured in the same plot in 1989.

5.4 Actinide Yields for Extreme Hydrologic Events

The expected yield from extreme runoff events was evaluated by assuming a range of actinide activity in the volume of runoff water. The Rocky Flats Drainage and Flood Control Master Plan (EG&G 1992) contains modeled flood flows for the 5, 10, 25, 50, and 100-year precipitation events. The runoff water yields for these events were multiplied by a range of actinide activities in surface water to estimate the actinide transport that might be expected to occur under extreme hydrologic conditions. The estimated actinide yields for extreme hydrologic events are shown in Tables 7, 8, and 9.

5.5 Compliant Actinide Yields

The quantities of Pu-239,240 that could be discharged in compliance with RFCA water-quality standards (a.k.a. "compliant" yields) were computed by multiplying the current Pu-239,240 discharge standard of 0.15 pCi/L by the annual water yield at each station. Results of this analysis are shown in Table 10. Table 10 also shows the maximum yields for each water year for comparison with the "compliant yields." The measured maximum yields were computed by multiplying the maximum observed Pu-239,240 activity (from samples collected during the Water Year) by the annual water yield. Table 10 shows that the Site discharged less Pu-239,240 than was allowed by the discharge standard on an annual basis over the past five years.

Table 7.--Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in Woman Creek.

			FLOOD					PLUTONIUM-239,240 (µg)	239,240 (µg)		
		LOCATION	RECURRENCE	ESTIMATED					i		
	GAGING	P	INTERVAL, &	YIELD	YIELD		Assumed	Assumed Activity of Water in pCi/I	ater in pCi/L		
WATERSHED	STATION	STATION	PRECIPITATION (INCHES)	(AF)*	(LITERS)	0.05	0.15	0.25	0.5	0.75	-
WOMAN CREEK	GS01	Woman Creek	2-YEAR, 1.6 IN.	4	4.93E+06	4	11	18	35	53	70
		at Indiana Street	10-YEAR, 2.5 IN.	48	5.92E+07	42	127	211	423	634	846
			50-YEAR, 3.4 IN.	172	2.12E+08	151	453	756	1,511	2,267	3,022
	-		100-YEAR, 3.8 IN.	256	3.16E+08	226	229	1,128	2,256	3,384	4,512
	GS02	Mower Ditch	2-YEAR, 1.6 IN.	3.5	4.32E+06	က	o	15	31	46	62
		at Indiana Street	10-YEAR, 2.5 IN.	42.5	5.24E+07	37	112	187	374	562	749
			50-YEAR, 3.4 IN.	148	1.82E+08	130	390	650	1,300	1,950	2,599
			100-YEAR, 3.8 IN.	224	2.76E+08	197	591	982	1,969	2,954	3,939
	GS14	Woman Creek	2-YEAR, 1.6 IN.	2.5	3.08E+06	2	7	11	22	33	44
		Upstream from	10-YEAR, 2.5 IN.	62.5	7.71E+07	55	165	275	551	826	1,101
		Mower Ditch	50-YEAR, 3.4 IN.	248	3.05E+08	218	654	1,090	2,181	3,271	4,362
		Diversion	100-YEAR, 3.8 IN.	388	4.79E+08	342	1,026	1,709	3,419	5,128	6,838
	GS07/SW029	GS07/SW029 Woman Creek	2-YEAR, 1.6 IN.	1.0	1.23E+06	,	က	4	6	13	18
		at Pond C-1	10-YEAR, 2.5 IN.	38	4.69E+07	33	100	167	335	502	029
			50-YEAR, 3.4 IN.	165	2.04E+08	145	436	727	1,454	2,181	2,908
			100-YEAR, 3.8 IN.	265	3.27E+08	234	701	1,168	2,335	3,503	4,670
									Ž,		
	9189	Antelope	2-YEAR, 1.6 IN.	0	0.00E+00	0	0	0	0	0	0
		Springs Creek	10-YEAR, 2.5 IN.	4.0	4.93E+06	4	11	18	35	53	20
			50-YEAR, 3.4 IN.	13	1.60E+07	7	34	22	115	172	229
			100-YEAR, 3.8 IN.	17	2.10E+07	15	45	75	150	225	300

["WATER YIELDS OBTAINED FROM THE ROCKY FLATS DRAINAGE AND FLOOD CONTROL MASTER PLAN (EG&G, 1992)]

24

5.3 Estimated Annual Soil Erosion

The expected depth of annual soil erosion was estimated for the Woman Creek, Walnut Creek, and SID drainage basins by dividing the unit TSS yield by an assumed average soil bulk density of 1.5 grams / cubic centimeter (g/cm³). This bulk density compares well with a previous investigation that measured soil bulk density to range from 1.1 to 2.4 g/cm³ (Webb et al, 1993).

The estimated annual soil erosion depths ranged from about 0.0001 millimeters (mm) in Woman Creek to 0.3 mm in Walnut Creek. Annual soil erosion in the SID drainage basin was estimated to be about .02 mm. Again, these values are influenced by large yields measured in 1995 and thus represent maximum values based on limited data. A previous study by Webb et al (1993) concluded that the annual erosion in Woman Creek was approximately 1.80 mm. This value was determined by comparing Pu-239,240 activity in Site soils in 1974 to Pu-239,240 activity measured in the same plot in 1989.

5.4 Actinide Yields for Extreme Hydrologic Events

The expected yield from extreme runoff events was evaluated by assuming a range of actinide activity in the volume of runoff water. The Rocky Flats Drainage and Flood Control Master Plan (EG&G 1992) contains modeled flood flows for the 5, 10, 25, 50, and 100-year precipitation events. The runoff water yields for these events were multiplied by a range of actinide activities in surface water to estimate the actinide transport that might be expected to occur under extreme hydrologic conditions. The estimated actinide yields for extreme hydrologic events are shown in Tables 7, 8, and 9.

5.5 Compliant Actinide Yields

The quantities of Pu-239,240 that could be discharged in compliance with RFCA water-quality standards (a.k.a. "compliant" yields) were computed by multiplying the current Pu-239,240 discharge standard of 0.15 pCi/L by the annual water yield at each station. Results of this analysis are shown in Table 10. Table 10 also shows the maximum yields for each water year for comparison with the "compliant yields." The measured maximum yields were computed by multiplying the maximum observed Pu-239,240 activity (from samples collected during the Water Year) by the annual water yield. Table 10 shows that the Site discharged less Pu-239,240 than was allowed by the discharge standard on an annual basis over the past five years.

Table 7.--Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in Woman Creek.

	_	_	_				100000						_												
		-	70	846	3,022	4,512		62	749	2,599	3,939		44	1,101	4,362	6,838	e alicajos	18	670	2,908	4,670	0	70	229	300
		0.75	53	634	2,267	3,384		46	562	1,950	2,954		33	826	3,271	5,128		13	502	2,181	3,503	0	53	172	225
-239,240 (µg)	/ater in pCi/L	0.5	35	423	1,511	2,256		31	374	1,300	1,969		22	551	2,181	3,419		o	335	1,454	2,335	0	35	115	150
PLUTONIUM-239,240 (µg)	Assumed Activity of Water in pCi/L	0.25	18	211	756	1,128		15	187	650	985	417	11	275	1,090	1,709		4	167	727	1,168	0	18	57	75
	Assumed	0.15	-	127	453	229		6	112	390	591	Level of the second	7	165	654	1,026		က	100	436	701	0	1	34	45
		0.05	4	42	151	226		3	37	130	197		2	55	218	342		٢	33	145	234	0	4	1	15
	YIELD	(LITERS)	4.93E+06	5.92E+07	2.12E+08	3.16E+08		4.32E+06	5.24E+07	1.82E+08	2.76E+08	Section 15 and	3.08E+06	7.71E+07	3.05E+08	4.79E+08	B	1.23E+06	4.69E+07	2.04E+08	3.27E+08	0.00E+00	4.93E+06	1.60E+07	2.10E+07
ESTIMATED	YIELD	(AF)*	4	48	172	256		3.5	42.5	148	224	plant of the second	2.5	62.5	248	388		1.0	38	165	265	0	4.0	13	17
FLOOD RECURRENCE	INTERVAL, &	PRECIPITATION (INCHES)	2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.		2-YEAR, 1.6 IN.	10-YEAR, 2.5 tN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.		2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.		2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.	2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.
LOCATION	OF	STATION	Woman Creek	at Indiana Street				Mower Ditch	at Indiana Street				Woman Creek	Upstream from	Mower Ditch	Diversion		Woman Creek	at Pond C-1			Antelope	Springs Creek		
	GAGING	STATION	GS01					GS02					GS14					GS07/SW029 Woman Creek				GS16			
		WATERSHED	WOMAN CREEK																						

["WATER YIELDS OBTAINED FROM THE ROCKY FLATS DRAINAGE AND FLOOD CONTROL MASTER PLAN (EG&G, 1992)]

54

Table 8.--Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in Walnut Creek.

		1	740	2,080	4,089	5,216		388	705	1,075	1,251	18	123	264	317
		0.75	555	1,560	3,066	3,912		291	529	806	938	13	93	198	238
-239,240 (µg)	ter in pCi/L	0.5	028	1,040	2,044	2,608		194	352	538	626	6	62	132	159
PLUTONIUM-239,240 (μg)	Assumed Activity of Water in pCi/	0.25	185	520	1,022	1,304		26	176	269	313	4	31	99	62
	Assumed	0.15	111	312	613	782		58	106	161	188	3	19	40	48
		0.05	37	104	204	261		19	35	54	63	1	9	13	16
:	YIELD	(LITERS)	5.18E+07	1.46E+08	2.86E+08	3.65E+08	1	2.71E+07	4.93E+07	7.53E+07	8.76E+07	1.23E+06	8.64E+06	1.85E+07	2.22E+07
ESTIMATED	YIELD	(AF)*	42	118	232	296		22	40	61	71	-	7	15	18
FLOOD RECURRENCE	INTERVAL, &	PRECIPITATION (INCHES)	2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.		2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.	2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.
LOCATION	Ь	STATION	Walnut Creek	at Indiana Street				Inflow to	Pond B-5	-		Inflow to	Pond A-3	subtracting WA11	
	GAGING	STATION	GS03					GS09	(Immediately	Downstream	from GS10)	GS13 / SW093 Inflow to			
		WATERSHED	WALNUT CREEK					4						•	

["WATER YIELDS OBTAINED FROM THE ROCKY FLATS DRAINAGE AND FLOOD CONTROL MASTER PLAN (EG&G, 1992)]

Table 9.--Estimated Actinide Yields for Selected Hydrologic Events at Monitoring Stations in the South Interceptor Ditch.

			_	70	264	564	705
			0.75	53	198	423	529
(B)		ter in pCi/L	0.5	35	132	282	352
A-239,240 (L		tivity of Wa	0.25	18	99	141	176
PLUTONIUM-239,240 (μg)		Assumed Activity of Water in pCi/L	0.15	1-	40	85	106
		4	0.05	4	13	28	35
		YIELD	LITERS	4.93E+06	1.85E+07	3.95E+07	4.93E+07
	ESTIMATED	YIELD	(AF)*	4	15	32	40
FLOOD	RECURRENCE	INTERVAL, &	PRECIPITATION (INCHES)	2-YEAR, 1.6 IN.	10-YEAR, 2.5 IN.	50-YEAR, 3.4 IN.	100-YEAR, 3.8 IN.
	LOCATION	OF	STATION STATION	Pond C-2	Inflow		
		GAGING	STATION	SW027			
			WATERSHED	SOUTH	INTERCEPTOR	DITCH	

["WATER YIELDS OBTAINED FROM THE ROCKY FLATS DRAINAGE AND FLOOD CONTROL MASTER PLAN (EG&G, 1992)]

25

Table 10.-- Comparison of Estimated "Compliant" Maximum Annual
Plutonium-239,240 Yields with Maximum Measured Yields for
Each Water Year

(Total Maximum Annual Yield Estimations Made Assuming Discharged Water Always Has a Hypothetical, Constant Activity of 0.15 pCi/Liter)

WATER YEAR	ESTIMATED MAXIMUM ANNUAL Pu-239,240 YIELD if All Water had 0.15 pCi/L Pu (µg/yr)	MAXIMUM MEASURED ANNUAL Pu-239,240 YIELD1 (μg/yr)
1000		
1993	238	32
1994	153	2
1995	2,392	30
1997	751	20
40.	(14 P)	144.6
1993	130	15
1994	235	8
1995	3,715	150
1996	465	22
1997	1,274	397

¹⁾ Computation assumes all water had the maximum Pu-239.240 activity measured at each station for each water year.

The preliminary results indicate that current soil activity in the Woman Creek and Walnut Creek drainages might be at a level that does not adversely impact surface-water quality on an annual basis when considered from a annual total yield perspective. However, the RFCA regulates the Site by comparison of the 30-day moving average Pu-239,240 and Am-241 activities to the 0.15 pCi/L standard for each actinide and does not incorporate the concept of total actinide yeilds into its regulatory framework.

5.6 Runoff Coefficients

The runoff coefficients for selected Site drainage basins were computed by dividing the annual volume of precipitation that fell on the drainage basins by the annual water yield measured at the downstream-most point in the basins (Equation 3). Estimated runoff coefficients for selected Site drainage basins are shown in Tables 11, 12, and 13.

Equation 3:

Runoff Coefficient for Basin =
$$(P_B \times DA_B) / AY_B$$

where:

P_B = Annual total precipitation depth in basin,

 DA_{R} = Drainage basin area, and

 AY_{B} = Annual total runoff yield in the basin.

²⁾ Measurement of Pu-239,240 for GS02 in WY95 used for GS01

The drainage basin slope, percent vegetative cover, cover type, soil characteristics, land use characteristics, and other conditions will affect the value of the runoff coefficient, and the soil erosion and associated actinide transport characteristics as well. The runoff coefficient calculated herein will be used to calibrate the hydrologic components of the WEPP erosion model.

Table 11.-- Runoff Coefficient Determination for Selected Woman Creek Gaging Stations.

	Γ		MEASURED	ESTIMATED		
			TOTAL	POTENTIAL	MEASURED	
		DRAINAGE	ANNUAL	TOTAL ANNUAL	ANNUAL	ESTIMATED
	GAGING	AREA	PRECIPITATION	YIELD	YIELD	RUNOFF
WATER YEAR	STATION	·			1	COEFFICIENT
	STATION	(AC)	(FT)	(AF)	(AF)	COEFFICIENT
1993	GS01+ GS02		0.00	4.005	90	0.07
1994	GS01+ GS02	1545	0.88	1,365	90 58	0.07
1995	GS01+ GS02	1545	0.91	1,400	905	0.04
A STATE OF THE PROPERTY OF THE	denote the contract of the con		1.48	2,283	THE RESERVE OF THE PROPERTY OF	CONTROL OF THE PROPERTY OF THE
1996	GS01	1364	1.02	1,396	34	0.02
1997	GS01		1.20	1,631	284	0.17
					AVERAGE:	0.08
1000	2211				70	0.00
1993	GS14		0.88	789	73	0.09
1994	GS14	_	0.91	809	122	0.15
1995	GS14	893	1.48	1,319	401	0.30
					AVERAGE:	0.12
11		2.0				
1993	GS07		0.88	712	186	0.26
1994	GS07	806	0.91	730	135	0.18
1995	SW029		1.48	1,191	1238	1.04
1996	SW029		1.02	825	152	0.18
					AVERAGE:	0.21
1993	GS16		0.88	119	35	0.29
1994	GS16		0.91	122	28	0.23
1995	GS16	135	1.48	199	103	0.51
1996	GS16		1.02	138	66	0.48
1997	GS16	i	1.20	161		
					AVERAGE:	0.33
10.10.00	*1					
1994	GS18	501	0.91	454	46	0.10
1995	GS18		1.48	740	161	0.22
					AVERAGE:	0.10
Notes:						

¹⁾ Values in Italics based on partial record at GS14, GS18.

²⁾ AVERAGE runoff coefficient values do not include water year 1995 data due to extreme hydrologic conditions in spring of 1995.

Table 12.-- Runoff Coefficient Determination for South Interceptor Ditch Gaging Stations.

	1		MEASURED	ESTIMATED		COMPOSITE
			ANNUAL	POTENTIAL	MEASURED	BASIN
		DRAINAGE	TOTAL	ANNUAL TOTAL	ANNUAL	ESTIMATED
	GAGING	AREA	PRECIPITATION	YIELD	YIELD	RUNOFF.
WATER YEAR	STATION	(AC)	(FT)	(AF)	(AF)	COEFFICIENT
			, ,		al company	10.00
1995	SW027		1.48	275	63	0.23
1996	SW027	186	1.02	190	15.5	0.08
1997	SW027		1.20	222	22	0.10
					AVERAGE:	0.14
20,244			10.00			
1995	GS21		1.48	3.9	2.5	0.64
1996	GS21	2.66	1.02	2.7	1.1	0.40
					AVERAGE:	0.52
1.0	1.5					The second second
1995	GS22		1.48	20,8	19.7	0.95
1996	GS22	14.1	1.02	14.4	10.9	0.76
		1			AVERAGE:	0.85
100	144	6435	and the second			
1995	GS24		1.48	8.6	1.6	0.19
1996	GS24	5.84	1.02	6.0	0.63	0.11
					AVERAGE:	0.15
200	4 1 1 1 1					
1995	GS25		1.48	9.9	7	0.71
1996	GS25	6.7	1.02	6.9	2.2	0.32
					AVERAGE:	0.51

Notes:

Table 13.--Runoff Coefficient Determination for Selected Walnut Creek Gaging Stations.

WATER YEAR	GAGING STATION	DRAINAGE AREA (AC)	MEASURED ANNUAL TOTAL PRECIPITATION (FT)	ESTIMATED POTENTIAL ANNUAL TOTAL YIELD (AF)	MEASURED ANNUAL YIELD (AF)	ESTIMATED RUNOFF COEFFICIENT
1993	GS03		0.88	872	49	0.06
1994	GS03		0.91	894	89	0.10
1995	GS03	987	1.48	1.458	1405	0.96
1996	GS03		1.02	1,010	176	0.17
1997	GS03		1.20	1,180	482	0.41
				,	AVERAGE:	0.18
44.4	100	42.5				
1993	GS10		0.88	159	41	0.26
1994	G\$10		0.91	163	60	0.37
1995	€ GS10	180	1.48	266	154	0.58
1996	GS10		1.02	184	88	0.48
1997	GS10		1.20	215	110	0.51
					AVERAGE:	0.40
4.0	1701 (194		16 1. 4			
1993	GS13		0.88	220	69	0.31
1994	SW093	249	0.91	226	59	0.26
1995	SW093		1.48	368	234	0.64
1996	SW093		1.02	255	80	0.31
1997	SW093		1.20	298	136	0.46
NOTES					AVERAGE:	0.34

NOTES

¹⁾ Values in italics for water year 1995 are estimated based on 6 months of continuous record.

²⁾ Values for GS22 measured yield do not include baseflow of approximately 0.025 cfs.

^{1) *} Measured annual yield for GS03 adjusted by subtracting out wastewater treatment plant yield.

²⁾ AVERAGE runoff coefficient values do not include water year 1995 data due to extreme hydrologic conditions in spring of 1995.

5.7 Summary of Results

5.7.1 Woman Creek Results

Evaluation of the load and yield estimates for Woman Creek in Table 4 indicate that approximately 38 µg of Pu-239,240 and 105 µg of Am-241 are annually discharged off-Site through Woman Creek. Larger quantities of uranium (2,621 grams) are discharged off-Site due to its natural occurrence in the region and solubility. These quantities of actinides combined with about 2,265 kilograms of sediment are discharged to the Woman Creek Reservoir facility each year.

Most of the sediment discharge from Woman Creek likely comes from erosion of Buffer Zone Roads. Table 4 shows that about 7,440 kilograms of sediment are annually moved past the GS16 gage on Antelope Springs Gulch. Most of this material is suspected to come from a firebreak road located immediately upstream from the gage. Comparison of the GS16 TSS yield to the yield at GS07/SW029 indicates that about 80 percent of the GS16 sediment is trapped in Pond C-1 on Woman Creek.

Comparison of annual yields at GS07/SW029 (Pond C-1 outlet) and GS14 (Woman Creek below Pond C-2) reveals that about 67 percent of the solids passing through Pond C-1 are removed in the thickly vegetated channel of the Woman Creek Bypass that routes Woman Creek around Pond C-2. However, there are very few data from GS14 to support this conclusion.

Table 11 shows that very little precipitation runoff occurs in the Woman Creek watershed. Runoff coefficients for Woman Creek were calculated to be between about 0.1 and 0.3, the highest value being for GS16, which receives firebreak road runoff.

The analysis resulted in an estimated erosion rate of 0.0002 mm per year for the Woman Creek drainage. However, this value applies to the entire GS01 and GS02 drainage and does not account for the fact that most of the watershed erosion occurs on disturbed areas and roads. These results might explain why very little actinide activity is measured in Woman Creek at GS01 (Woman Creek at Indiana Street).

5.7.2 South Interceptor Ditch Results

Only one gaging station (SW027) has been installed on the SID. All of the other gaging stations, in the SID watershed, are located on major tributaries to the SID. Table 5 and Figures 4, and 5 show that about 90 percent of the solids entering the SID between the 460 culvert (GS22) and the Building 881 Hillside (GS21, GS24, and GS25) are removed by deposition in the SID channel.

Some smaller tributary inflows occur east of the 881 Hillside that were not measured for this study. These tributaries are:

- 1) Two channels that route inner Industrial Area perimeter road runoff to the SID,
- 2) A road that once supported traffic from the East Access Road to Pond C-1 which was revegetated in 1996, and
- 3) A channel that carries East Access Road runoff to the eastern end of the SID. These tributaries are being evaluated with the WEPP model.

A new monitoring station (GS42) was installed this year to measure runoff and constituent yields from the eastern most tributary ((3) above).

Not withstanding the unmeasured tributary inflows, the data indicate that the SID is filling with sediment and thus limiting transport of suspended solids and associated radionuclides. The WEPP model will be calibrated to predict similar sediment deposition in the SID channel.

The data show that approximately 447 µg of Pu-239,240, 78 µg of Am-241, and 250 kg of U are annually discharged to Pond C-2. It appears that nearly all of this material is settling out of the water column in Pond C-2 due to the fact that the quantity of Pu-239,240 measured in Woman Creek at GS01 is an order of magnitude lower than the quantity discharged to Pond C-2. Approximately 2,650 kilograms of sediment are annually discharged to Pond C-2. The estimated soil erosion rate in the SID drainage is about 0.0002 cm, and the runoff coefficient is estimated to be about 0.14 for the entire sub-basin. Therefore, actinide transport due to soil erosion in the SID watershed appears to be small.

5.7.3 Walnut Creek Results

Evaluation of Table 6 and Figures 6 and 7 reveals the effectiveness of the detention ponds for removing suspended solids and associated Pu-239,240 and Am-241 from Site surface water. Stations GS10 and SW093/GS13 are located upstream from the detention ponds, and station GS03 is located downstream on Walnut Creek at Indiana Street. The data

show that the ponds remove about 85 percent of the TSS, Pu-239,240, and Am-241 from the Site runoff. However, the ponds are less effective at U removal as shown in Figure 7. This is likely due to U transport as a dissolved constituent.

The data show that approximately 131 μg of Pu-239,240, 99 μg of Am-241, and 2 kg of U are annually discharged off Site at GS03. Approximately 12,300 kilograms of sediment are annually discharged off-Site in Walnut Creek. The runoff coefficient is estimated to be about 0.18 for the entire Walnut Creek watershed, and estimated soil erosion rate in the Walnut Creek watershed is about 0.0002 cm. Therefore, actinide transport due to soil erosion in the SID watershed appears to be small.

5.8 Sensitivity Analysis

The computation of loads and yields is sensitive to the variability of the flow measurements and the radiochemical measurements and to the assumptions made in selecting representative measurements for the observed range of hydrologic conditions. The discharge and radiochemical measurements both vary by orders of magnitude. The loading computations were evaluated to determine which component (i.e. flow or activity (concentration)) controls the sensitivity in the calculations. For example, if flow varies over an order of magnitude, but activities vary only by a factor of two, then the calculation of load and yield was more sensitive to the flow measurements than the radiochemical measurements.

Results of the sensitivity analysis are shown in Table 14. There is no single variable or set of variables that consistently control the sensitivity of the load and yield calculations. Therefore, it is important to control the quality of the flow measurements and radionuclide and TSS measurements because all of the measurements can vary over several orders of magnitude.

Table 14.-- Relative Sensitivity of Loading Calculations to Independent Variables

	APPROXIMATE VARIABILITY OF MEASUREMENTS (ORDERS OF MAGNITUDE)						
GAGING STATION	Pu-239,240 Activity	Am-241 Activity	U Activity	TSS Concentration	Flow		
GS01	2	2	3	2	4		
GS02	2	3	2	2	3		
GS03	3	3	0.1	1.5	3.8		
GS07 / SW029	2	3	1	1	1		
GS10	3.5	3	2.4	2.5	2.4		
GS16	1	1	1	3	1		
GS17	3	2	0.75	2.5	1.5		
GS18	1	1	1	1	2		
GS21	1.5	0.9	2.5	2.25	1.5		
GS22	1.6	1	1	1.25	1		
GS24	1.3	0.25	1.25	2.25	0.5		
GS25	1	0.5	0.75	1.5	2		
SW027	2.75	3	0.2	2.2	2.25		
GS13 / SW093	2	3.8	1	2.5	1.5		

Notes: 1) Pu-239,240 = plutonium-239,240; 2) Am-241 = americium-241,

³⁾ U = uranium-233,234 + uranium-235 + uranium-238;

⁴⁾ TSS = total suspended solids;

6.0 References

- Berzins, A., 1994, Use of Densely Spaced, Temporary Flumes in a Remedial Investigation of the Surface and Subsurface Flow Regime of Woman Creek, Operable Unit 5, DOE, Rocky Flats Plant, CO.
- Dunne, T. and Leopold, L.B., 1978, *Water in Environmental Planning*, W.H. Freeman and Company, New York.
- EG&G Rocky Flats, Inc., April 1992, *Rocky Flats Plant Drainage and Flood Control Master Plan*, Prepared By: Wright Water Engineers, Inc., Rocky Flats Plant, Golden, CO.
- EG&G Rocky Flats, Inc., November 1993, Event Related Surface Water Monitoring Report, Rocky Flats Plant: Water Years 1991 and 1992, EG&G Rocky Flats, Inc., Golden, CO, 132 p.
- EG&G Rocky Flats, Inc., 1993b, *Rocky Flats Plant Site Environmental Monitoring Report, January December 1991.*, Rocky Flats Plant, Golden, CO.
- EG&G Rocky Flats, Inc., November 1993, Event Related Surface Water Monitoring Report, Rocky Flats Environmental Technology Site: Water Year 1993, EG&G Rocky Flats, Inc., Golden, CO.
- DOE, 1980, Final Environmental Impact Statement, Rocky Flats Plant Site, U. S. Department of Energy, Golden, CO.
- Rocky Mountain Remediation Services, L.L.C., 1995, Event Related Surface Water Monitoring Report, Rocky Flats Environmental Technology Site: Water Year 1994, RMRS, Golden, CO.
- Rocky Mountain Remediation Services, L.L.C., 1995, Evaluation of Actinide Transport in Operable Unit Number 2 for the May 17, 1995 Storm Event, RMRS, Golden, CO.

- Shleien, B., ed., 1992, The Health Physics and Radiological Health Handbook, Revised Edition, Scinta, Inc., Silver Spring, MD, p. 265.
- Smith, M.E., Unruh, J.W., and Thompson, C.H., June 1996, Surface-Water Quantity and Quality Data, Rocky Flats Environmental Technology Site Near Denver, Colorado, Water Years 1994-95, U. S. Department of Interior, Geological Survey Open File Report 96-314, USGPO, Denver, CO.
- Smith, M.E., Unruh, J.W., and Thompson, C.H., 1997, Surface-Water Quantity and Quality Data, Rocky Flats Environmental Technology Site Near Denver, Colorado, Water Year 1996, U. S. Department of Interior, Geological Survey Open File Report 97-194, USGPO, Denver, CO.
- Webb, S.B., Ibrahim, S.A., and Whicker, F.W., 1993, *A Study of Plutonium in Soil and Vegetation at the Rocky Flats Plant*, in Environmental Health Physics:

 Proceedings of the Twenty-Sixth Midyear Topical Meeting of the Health Physics Society, January 24-28, 1993, Coeur d'Alene, Idaho, R.L. Kathren, D.H. Denham, K. Salmon and D.L. Felton, eds., Richland, Washington, pp 611-623.

Appendices

Appendix 1 - Comparison of Duplicate Total Suspended Solids Sample Analysis Results for Uncertainty Calculation.

12.2%	Average Relative Percent Difference (Uncertainty):	e Relative Percer	Averag				
16.7%	5	mg/L	1800	DUPLICATE	6/28/95	SW00344EG	GS27
	5	mg/L	1500	REAL SAMPLE	6/28/95	SW00344EG	GS27
9.1%	വ	mg/L	110	REAL SAMPLE	6/28/95	SW00340EG	GS22
	5	mg/L	120	DUPLICATE	6/28/95	SW00340EG	GS22
%0.0	ښ ش	mg/L	15	REAL SAMPLE	11/5/94	SW00550GS	GS17
	5	mg/L	15	DUPLICATE	11/5/94	SW00550GS	GS17
%0:0	2	mg/L	ಬ	DUPLICATE	10/17/93	SW70158JE	GS14
	5	mg/L	5	REAL SAMPLE	10/17/93	SW70158JE	GS14
9.5%	2	mg/L	21	DUPLICATE	7/23/94	SW00522GS	GS11
	5	mg/L	19	REAL SAMPLE	7/23/94	SW00522GS	GS11
20.0%	5	mg/L	ഹ	REAL SAMPLE	6/20/94	SW00520GS	GS11
	5	mg/L	9	DUPLICATE	6/20/94	SW00520GS	GS11
5.9%	S	mg/L	170	DUPLICATE	6/20/94	SW00516GS	GS10
	5	mg/L	180	REAL SAMPLE	6/20/94	SW00516GS	GS10
2.8%	വ	mg/L	36	DUPLICATE	8/31/94	SW00527GS	6089
	5	mg/L	35	REAL SAMPLE	8/31/94	SW00527GS	6889
3.8%	Ω.	mg/L	26	REAL SAMPLE	9/21/94	SW00532GS	6809
	5	mg/L	27	DUPLICATE	9/21/94	SW00532GS	6089
20.0%	S	mg/L	30	REAL SAMPLE	10/17/94	SW00544GS	6809
	5	mg/L	45	REAL SAMPLE	10/17/94	SW00541GS	6089
	ιΩ	mg/L	26	REAL SAMPLE	9/21/94	SW00532GS	6089
3.8%	5	mg/L	27	DUPLICATE	9/21/94	SW00532GS	6089
%0.0	2	mg/L		REAL SAMPLE	10/17/93	SW70157JE	GS07
	5	mg/L	7	DUPLICATE	10/17/93	SW70157JE	GS07
37.5%	2	mg/L	ω	REAL SAMPLE	11/14/94	SW00554GS	GS05
	5	mg/L	5	DUPLICATE	11/14/94	SW00554GS	GS05
RELATIVE ABSOLUTE % DIFF.	DETECTION LIMIT	UNITS	RESULT	RESULT TYPE	COLLECTION DATE	SAMPLENO	LOCATION
The state of the s							

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1993 - 1997 AT GS01

			T		
		Freeze	5	900	e 77
	Total Suspended Solids	(drams/hr)	6 424	3,124	647
		Error		22%	2
	U-total	(a/hr)	2 69E±00	1 42F+00	1.02F-01
RROR		Error		182%	
ESTIMATED LOADS AND ASSOCIATED ERROR	Am-241	(μg/hr)	4.54E-02	4.95E-03	5.87E-05
83		Error		178%	
	Pu-239,240	(µg/hr)	7.18E-01	5.12E-02	0.00E+00
		Statistic	MAXIMUM	AVERAGE	MINIMOM

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1993 - 1997 AT GS01

Pu-239,240 (μg)	Pu-239,240 (µg) Am-241(µg)	U-total (g)	TSS (kg)
20	23	1,751	412

S

UMMARY OF ACTINIC	UMMARY OF ACTINIDE YIELDS FOR 1991 - 1997 AT GS01	1997 AT GS01		
	ESTIMATED AVERAGE ANNUAL YIELDS	E ANNUAL YIELDS		
Water Year	Pu-239,240 (μg)	Am-241 (μg)	U-total (g)	TSS (kg)
1991	19	59	857	
1992	59	26	2,476	,
1993	c	,	111	34
1994	_	4.0	148	-
1996	•	7	393	789
1997	20	23	6,523	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1991 - 1994 AT GS02

			ESTIMATED LOAL	ESTIMATED LOADS AND ASSOCIATED ERROR	ERROR			
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(µg/hr)	Error	(µg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	8.70E-02		9.19E-02		4.67E-01		10,721	
AVERAGE	3.31E-02	138%	3.11E-02	168%	2.03E-01	27%	3,733	22%
MINIMUM	2.91E-05		3.50E-06		5.40E-03		5	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1991 - 1994 AT GS02

D LYWINGS	ACTIVIDE HELDS	SOMMAN OF ACTINIDE FIELDS FOR WATER LEARS 1991 - 1994 AT GOOD	7000 14 +661 - 1		
	Annual	ESTIMATED AVERAGE ANNUAL YIELDS	: ANNUAL YIELDS		
Water Year	Water Year Days with Flow	Pu-239,240 (µg)	Am-241(µg)	U-total (g)	TSS (kg)
1991-1995	152	17	81	870	1,854

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1993 - 1996 AT GS16

	AVERAGE	MIMIXAM	Statistic	
	2.46E-03 0.00E+00	1 175-00	(11a/hr)	B.: 228 240
	325%	11.00	Frror	
	1.04E-03 0.00E+00	(Hg/III)	Am-241	
	155%	בווסו	n	OADS AND ASSO
	4.95E-02 1.31E-02 4.80E-04	(9/11/)	U-total	CIATED ERRO
	80%	Ellor	1	ZP.
	16,428 3,864 34	(grams/hr)	Total Suspended Solids	
1971	22%	Error		

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1993 - 1996 AT GS16

7,440	34	6	υ	1993 - 1996
TSS (kg)	U-total (g)	Am-241(μg)	Water Year Pu-239,240 (μg)	Water Year
		ESTIMATED AVERAGE ANNUAL YIELDS	ESTIMATED AVERA	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR 1994 - 1997 AT GS16

	·			ESTIMATED LOADS AND ASSOCIATED ERROR	ADS AND ASS	OCIATED ERRO	ž		
Water Year	Statistic	Pu-239,240 (µg/hr)	Error	Am-241 (μg/hr)	Error	U-total (g/hr)	Error	Total Suspended Solids	
						(9)		(Sidilis/iii)	Error
1993	MAXIMUM	1.17E-02	3760/	6.09E-03		2.28E-02		1.64E+04	
	MINIMOM	0.00E+00	0	0.00E+00	9	5.29E-04	/%	4.72E+03 3.42E+01	22%
	MAXIMUM	1.89E-03		9.09E-04		4.95E-02		5 83E+03	
1994 - 1996	AVERAGE	6.37E-04	235%	4.68E-04	210%	2.06E-02	90%	1.93E+03	22%
	MINIMICE	0.005+00		2.62E-05		4,80E-04		5.71E+01	

			11333	59	ဖ	6	365	1994 - 1996
			3548	8	ω	ω	365	1993
			TSS (kg)	U-total (g)	Am-241 (μg)	Pu-239,240 (μg)	Days with Flow	Water Year
					NUAL YIELDS	ESTIMATED AVERAGE ANNUAL YIELDS		
						SUMMARY OF ACTINIDE YIELDS FOR 1994 - 1997 AT GS16	ACTINIDE YIELDS F	SUMMARY OF
5.71E+0		4.80E-04		7.02.1-00		0.00	WI WING CIVI	
1.93E+0	90%	2.06E-02	210%	4.68E-04	235%	6.37E-04	AVERAGE	1994 - 1996
5.83F+0		4.95E-02		9.09E-04		1.89E-03	MAXIMUM	
3.42E+0		5.29E-04		0.00E+00		0.00E+00	MINIMOM	
4.72E+0:	77%	9.93E-03	158%	1.21E-03	376%	3.27E-03	AVERAGE	1993
1.64E+0.		2.28E-02		6.09E-03		1.17E-02	MAXIMUM	200
(grains/ii	1.00	(9,)		1				
drama/h	Error	(a/hr)	Error	(μg/hr)	Error	(μg/hr)	Statistic	Water Year
Total Strenge		U-total		AT1-24		1 4-600,640		

	LOAD ERROR	(%)	22%		22%
	TSS LOAD	(grams/hr)	2,777.58		214.10
	U LOAD ERROR	(%)	32%	44%	62%
	U LOAD	(g/hr)	5.68E-02	3.33E-04	1.62E-02
	LOAD ERR	(%)		235%	85%
	AM LOAD	(μg/hr)	0.00E+00	8.39E-06	4.20E-04
	PU LOAD ERROR	(%)	114%	52%	10%
TA	PU LOAD	(µg/hr)	9.72E-03	4.37E-05	0.00E+00
GS18 LOAD DATA		DATE	930517	930617	931017

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1993 - 1994 AT GS18

			ESTIMATED LOADS AND ASSOCIATED ERROR	ADS AND ASS	OCIATED ERR	OR		
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(µg/hr)	Error	(hg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	9.72E-03		4.20E-04		5.68E-02		2,778	
AVERAGE	3.25E-03	29%	1.43E-04	160%	2.44E-02	46%	1,496	22%
MINIMUM	0.00E+00		0.00E+00		3.33E-04		214	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1993 - 1994 AT GS18

		ESTIMATED AVERAGE ANNUAL YIELDS	E ANNUAL YIEL	DS	
Water Year	Water Year Days with Flow	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
1993 - 1994	165	က	9	41	1,040

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1993 - 1995 AT GS17

			ESTIMATED LOADS AND ASSOCIATED ERROR	ND ASSOCIATED I	ERROR			
	Pu-239,240		Am-241		U-total		Total Suspended Solids	S
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	7.96E-01		5.06E-02		1.28E-01		17,710	
AVERAGE	1.00E-01	238%	6.71E-03	80%	5.18E-02	37%	3,646	22%
MINIMUM	0.00E+00		0.00E+00		1.95E-03		7	

	SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1993 - 1995 AT GS1;
ı	≽
١	₹
ı	₹
ı	'n
١	≺
١	0
ı	П
4	⅀
١	읔
١	=
ı	≦
ı	믔
ı	"
ı	≘
Į	四
ł	ъ
ł	ŭ
Ī	m
ł	О
4	ᅍ
ı	S
1	⋝
1	ᆿ
1	끢
ı	2
۱	m
1	➣
: I	Z
ı۱	S
II	7
1	ö
١	ω
ų	ż
1	ō
1	95
:	₹.
	\vec{a}
ŀ	ດ
1	Ω̈́
il	-:

Water Year Days with Flow ESTIMATED AVERAGE ANNUAL YIELDS U-total (g) TSS (kg) 1993 - 1995 340 1,490 396 325 41,309	00	,	COMMENT OF THE PROPERTY OF THE	000 711 0011		
Pu-239,240 (μg) Am-241(μg) U-total (g) 1,490 396 325			ESTIMATED AVERAGE A	ANNUAL YIELDS		
340 1,490 396 325	Water Year D	ays with Flow	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
	1993 - 1995	340	1,490	396	325	41,309

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1991 - 1994 AT GS07 / SW029

			ESTIMATED LOAD	ESTIMATED LOADS AND ASSOCIATED ERROR) ERROR			
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	7.47E-02		3.03E-01		8.25E-01		2.12E+03	
AVERAGE	2.08E-02	95%	5.26E-02	142%	2.75E-01	64%	8.84E+02	22%
MINIMOM	0.00E+00		3.06E-04		3.95E-02		1.78E+02	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1991 - 1994 AT GS07 / SW029

	ESTII	ESTIMATED AVERAGE ANNUAL YIELDS	JAL YIELDS	
Water Year	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
1991 - 1994	43	181	593	2,020

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1991 - 1997 AT GS14

			ESTIMATED LOADS AND ASSOCIATED ERROR	AND ASSOCIATE	D ERROR			
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(μ g/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	3.07E-03		2.80E-04		2.28E-01		376	
AVERAGE	1.54E-03	435%	1.40E-04	210%	1.78E-01	30%	290	22%
MINIMUM	0.00E+00		0.00€+00		1.28E-01		204	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1991 - 1997 AT GS14

		ESTIMATED AVERAGE ANNUAL YIELDS	NNUAL YIELDS		
Water Year Days with Flow	ys with Flow	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
1993	172	ហ	0	212	622
	;	•		1	1
1994	219	0	4	846	750
Averages:	196	3	2	529	686

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 - 1996 AT GS21

		T		T	Τ	7
			H Cr		22%	0/ 77
		Total Suspended Solids	(grams/hr)	2 47F+04	4 28E+03	1.14E+01
	ED ERROR		Error		23%	
	IND ASSOCIATI	U-total	(a/hr)	1.62E-01	2.99E-02	0.00E+00
1700 14 000 - 000	ESTIMATED LOADS AND ASSOCIATED ERROR		Error		30%	
	3	Am-241	(µg/hr)	4.66E-03	1.54E-03	0.00E+00
יייייייייייייייייייייייייייייייייייייי			Error		28%	
		Pu-239,240	(µg/hr)	4.79E-02	1.18E-02	1.22E-04
			Statistic	MAXIMUM	AVERAGE	MINIMUM

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS21

		ESTIMATED AVERAGE ANNUAL YIELDS	E ANNUAL YI	ELDS
Vater Years	Ри-239,240 (µg)	Am-241(µg)	U-total (g)	TSS (kg)
1995* / 1996	1	-	2	271

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 AT GS21

		T.		220%	0/ 77	
	Total Suspended Solids	(arams/hr)	5 89E+03	2 93E+03	2.50E+02	
ED ERROR		Error		21%		
AND ASSOCIATE	U-total	(d/hr)	3.12E-02	1.40E-02	1.65E-03	
ESTIMATED LOADS AND ASSOCIATED ERROR		Error		37%		
ESTIM	Am-241	(µg/hr)	4.64E-03	2.16E-03	2.23E-04	
		Error		41%		
	Pu-239,240	(µg/hr)	2.52E-02	1.08E-02	9.38E-04	
		Statistic	MAXIMUM	AVERAGE	MINIMUM	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1996 AT GS21

		H		228/	2.2.70	
	Total Suspended Solids	(drams/hr)	2 47F+04	5.37E+03	1 14 1 1 1 1	-0-1
ED ERROR		Error		25%		
AND ASSOCIATE	U-total	(g/hr)	1.62E-01	4.26F-02	0 00F+00	
ESTIMATED LOADS AND ASSOCIATED ERROR		Error		24%		
ESTIMATED	Am-241	(\makepage)	4.66E-03	1.05E-03	0.00E+00	
		Error		18%		
	Pu-239,240	(μg/hr)	4.79E-02	1.25E-02	1.22E-04	
		Statistic	MAXIMUM	AVERAGE	MINIMOM	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS21

TSS (kg)	384	158
U-total (g)	2	m
 Am-241(μg)	-	0,4
Pu-239,240 (μg)	2	0.5
Days with Flow	88	92
Water Year	 1995*	1996

*Note: Monitoring at GS21 began in April 1995.

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 - 1996 AT GS24

			E	STIMATED LOADS /	ESTIMATED LOADS AND ASSOCIATED ERROR	ROR		
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	6.03E-02		3.63E-03		3.70E-02		1.78E+04	
AVERAGE	1.30E-02	26%	9.40E-04	46%	8.62E-03	16%	3.01E+03	22%
MINIMUM	1.52E-04		5.60E-06		1.39E-04		7.26E+00	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS24

	_			1
Water Years	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
		·		
1995* / 1996		0.4	`	333

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 AT GS24

			ES	TIMATED LOADS /	ESTIMATED LOADS AND ASSOCIATED ERROR	ROR		
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	6.03E-02		3.32E-03		3.70E-02		1.78E+04	
AVERAGE	2.33E-02	23%	1.39E-03	38%	1.66E-02	16%	6.90E+03	22%
MINIMUM	1.68E-03		2.41E-04		4.10E-03		1.06E+03	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1996 AT GS24

			EX	STIMATED LOADS	ESTIMATED LOADS AND ASSOCIATED ERROR	ROR		
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	3.43E-02		1.59E-03		2.25E-02		8.60E+03	
AVERAGE	9.11E-03	27%	5.34E-04	50%	5.62E-03	16%	1.56E+03	22%
MINIMUM	1.52E-04		5.60E-06		1.39E-04		7.26E+00	
Statistic MAXIMUM AVERAGE MINIMUM	Pu-239,240 (μg/hr) 3.43E-02 9.11E-03 1.52E-04	Error 27%	Am-241 (μg/hr) 1.59E-03 5.34E-04 5.60E-06	Error 50%	U-total (g/hr) 2.25E-02 5.62E-03 1.39E-04	Error 16%	Total Suspended Solids (grams/hr) 8.60E+03 1.56E+03 7.26E+00	Error 22%

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS24

			ESTIMATED A	ESTIMATED AVERAGE ANNUAL YIELDS	ELDS
Water Year	Days with Flow	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
1995*	47	2	0.5	Ν	487
1996	110	0.9	0.3	_	180

Note: Monitoring at GS24 began in April 1995.

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 - 1996 AT GS25

	_					
			Error		22%	
		Total Suspended Solids	(grams/hr)	2.49E+04	6.75E+03	3.03E+01
	ED ERROR		Error		17%	
	AND ASSOCIATE	U-total	(g/hr)	9.39E-02	3.53E-02	0.00E+00
	ESTIMATED LOADS AND ASSOCIATED ERROR		Error		93%	
	Ш	Am-241	(µg/hr)	1.18E-02	2.71E-03	2.31E-05
			Error		42%	
		Pu-239,240	(µg/hr)	6.25E-02	1.60E-02	1.44E-04
. '			Statistic	MAXIMUM	AVERAGE	MINIMUM

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS25

		ESTIMATED AVERAGE ANNUAL YIELDS	RAGE ANNUA	AL YIELDS
Water Years	Water Years Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
1995* / 1996	*	~	7	401

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 AT GS25

		Error		22%	
	Total Suspended Solids	(grams/hr)	1.89E+04	6.73E+03	4.92E+02
D ERROR		Error		16%	
AND ASSOCIATE	U-total	(g/hr)	8.84E-02	6.13E-02	3.55E-02
ESTIMATED LOADS AND ASSOCIATED ERROR		Error		37%	
ES	Am-241	(ng/hr)	1.18E-02	4.22E-03	4.05E-04
		Error		28%	
	Pu-239,240	(μg/hr)	6.25E-02	2.48E-02	5.62E-03
		Statistic	MAXIMUM	AVERAGE	MINIMUM

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1996 AT GS25

	The state of the s	Error		22%	
	Total Suspended Solids	(grams/hr)	2.49E+04	6.77E+03	3.03E+01
ED ERROR		Error		19%	
AND ASSOCIATE	U-total	(g/hr)	9.39E-02	2.22E-02	0.00E+00
ESTIMATED LOADS AND ASSOCIATED ERROR		Error		76%	
Ú	Am-241	(µg/hr)	5.81E-03	1.58E-03	2.31E-05
		Error		65%	
	Pu-239,240	(hg/hr)	3.63E-02	9.48E-03	1.44E-04
		Statistic	MAXIMUM	AVERAGE	MINIMOM

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS25

			ESTIMATED	ESTIMATED AVERAGE ANNUAL YIELDS	ELDS
Water Year	Days with Flow	Pu-239,240 (μg)	Am-241(μg)	U-total (g)	TSS (kg)
					:
1995*	146	2	_	-	359
1996	231	0.46	0.37	ო	442

^{*}Note: Monitoring at GS25 began in April 1995.

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS22

5,657	34	12	4	1995* / 1996
TSS (kg)	U-total (g)	Am-241(μg)	Pu-239,240 (μg	Water Years
ELDS	E ANNUAL YI	ESTIMATED AVERAGE ANNUAL YIELDS		

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 AT GS22

			m	ESTIMATED LOADS AND ASSOCIATED	AND ASSOCIAT	ED ERROR		
	Pu-239,240		Am-241		U-total	Tc	Total Suspended Solids	lids
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	4.94E-02		2.53E-02		3.32E-01		4.97E+04	
AVERAGE	2.44E-02	69%	1.23E-02	47%	1.78E-01	18%	1.89E+04	22%
MINIMUM	5.96E-03		5.01E-03		5.76E-02		3.89E+03	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1996 AT GS22

Pu-239,240 Am-241 U-total Total Suspended Solids
Error (μg/hr) Error (g/hr) Error
3.37E-02 1.32E-01 1.32E-01
25% 3.88E-03 55% 7.93E-02 14% 2
2.27E-03

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1996 AT GS22

			ESTIMATED,	ESTIMATED AVERAGE ANNUAL YIELDS	YIELDS
Water Year	Days with Flow	Pu-239,240 (μg)	Am-241(µg)	U-total (g)	TSS (kg)
1995*	365	ω	74	35	2,428
1996	366	4	11	33	8,887

Note: Monitoring at GS22 began in April 1995.

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1995 - 1997 AT SW027

				ESTIMATED LOADS	ESTIMATED LOADS AND ASSOCIATED ERROR	RROR		
	Pu-239.240		Am-241		U-total		Total Suspended Solids	
Ctatietic	(10/hr)	Frror	(ma/hr)	Error	(a/hr)	Error	(grams/hr)	Error
Statistic	(11.61)		(La.					
MAXIMIM	1 71F+01		7.20E-01		8.35E+00		5.50E+04	
								/000
AVERAGE	117F+00	55%	5.57E-02	94%	7.42E-01	29%	9.69E+03	77.70
							,0,1,0,	
MINIMIN	0.00E+00		0.00E+00		1.98E-02		1.97E+01	
	00.00.0							

SHIMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1997 AT SW027

				•
		ESTIMATED AVERAGE ANNUAL YIELDS	SE ANNUAL Y	TELDS
Nater Year	Pu-239,240 (µg	Am-241(µg)	U-total (g)	TSS (kg)
1995	1,305	223	614	4,961
1996	22	9	81	347
1997	12	4	55	
AVERAGE	447	78	250	2,654

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEAR 1995 AT SW027

			ũ	STIMATED LOADS.	ESTIMATED LOADS AND ASSOCIATED ERROR	ROR		
	P11-239 240		Am-241		U-total		Total Suspended Solids	
Statistic	(na/hr)	Error	(ng/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMIM	1 71F+01		7.20E-01		8.35E+00		5.50E+04	
AVERAGE	5 82F+00	51%	2.69E-01	33%	2.76E+00	21%	2.69E+04	22%
MINIMIN	1 38F-03		9.08E-04		1.06E-01		1.44E+02	
	7 7 7 7 7 7							

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEAR 1996 AT SW027

ESTIMATED LOADS AND ASSOCIATED ERROR

			•					
	P11-239 240		Am-241		U-total		Total Suspended Solids	
Statistic	(iia/hr)	Error	(ng/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMIM	1 04 = +00		5,98E-02		8.32E-01		1.33E+04	
10 V C L V V	2 075 04	7980	1 36F-02	38%	3.70E-01	16%	2.97E+03	22%
AVERAGE	2.07 E-01	202	20 200:1	2,22	00 100 7		4 04 🗆 104	
MINIMOM	1.50E-03		0.00E+00		4.63E-UZ		1.31E+U1	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEAR 1997 AT SW027

		ESTIMATED LOADS AND ASSOCIATED ERROR	AND ASSOCI,	ATED ERROR		
	Pu-239,240		Am-241		U-total	
Statistic	(ng/hr)	Error	(ng/hr)	Error	(g/hr)	Error
MAXIMUM	3.05E-01		1.01E-02		8.25E-01	
AVERAGE	1.02E-01	86%	5.19E-03	195%	3.20E-01	46%
MINIMOM	4.41E-03		2.74E-04		8.66E-02	

				ESTIMATED LOADS AND ASSOCIATED ERROR	ND ASSOCIATED	RROR		
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(μg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	4,12E+01		4.67€+00		1.38E+01		296 109	
AVERAGE	1.64E+00	94%	2.70E-01	116%	8,59E-01	28%	72.172	22%
MINIMUM	3.35E-05		4.27E-05		2.15E-02		28	;
SUMMARY OF A	SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1991 - 1997 AT GS13 / SW093	TER YEARS 1991 - 19						
			97 AT GS13 / SW093					
	ESTIMATED AVERAGE A	NNUAL YIELDS	97 AT GS13 / SW093					
Water Years	ESTIMATED AVERAGE ANNUAL YIELDS Pu-239,240 (µg) Am-241(µg)	NNUAL YIELDS Am-241(µg)	997 AT GS13 / SW093	TSS (kg)			!	
	Pu-239,240 (μg)	NNUAL YIELDS Am-241(µg)	U-total (g) 784	TSS (kg)			!	

38,148

Water Years 1991 - 1997 1991 - 1996

		20000		ESTIMATED L	ESTIMATED LOADS AND ASSOCIATED ERROR	CIATED ERROR		
Water Year	Statistic	Pu-239,240 (µg/hr)	Error	Am-241	Error	U-total (g/hr)	TI TI	•
								19
	MAXIMUM	1.61E+01		1.32E+00		1.42E+00		
1994	AVERAGE	5.77E+00	18%	6.08E-01	27%	6.85E-01		41%
	MINIMUM	2.17E-02		6.95E-03		2.03E-01		
	MAXIMUM	2.13E+01		4.67E+00		2.26E+00		
1995	AVERAGE	4.95E+00	29%	1.18E+00	27%	1.23E+00		21%
	MINIMUM	4.10E-02		9.85E-03		4.34E-01		
	MAXIMUM	4.54E+00		5.53E-01		2.69E+00		
1996	AVERAGE	8.10E-01	28%	1.06臣-01	31%	7.16E-01		17%
	MINIMUM	4.00E-03		1.33E-03		1.29E-01		
	MAXIMUM	4.12E+01		4.66E+00		1.38E+01		
1997	AVERAGE	1.39€+00	138%	1.82E-01	119%	9.04E-01		26%
	MINIMUM	3.35E-05		4.27E-05		2.15E-02		

1997	1996	1995	1994	1993	1992	1991	Water Year		SUMMARY OF A		1997				1996			1995			1994		
190	143	1,716	60	103	64	33	Pu-239,240 (µg)	ESTIMA	SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1995 - 1997 AT SW093	MINIMUM	AVERAGE	MAXIMUM		MINIMUM	AVERAGE	MAXIMUM	MINIMIM	AVEXAGE	MAXIMUM	MINIMUM	AVERAGE	MAXIMUM	
101	87	1,761	57	38	92	39	Am-241 (µg)	ESTIMATED AVERAGE ANNUAL YIELDS	ATER YEARS 1995 - 19	3.35E-05	1.39€+00	4.12E+01		4.00E-03	8.10E-01	4.54E+00	4.105-02	4.95E+00	2.13E+01	2.17E-02	5.77E+00	1.61E+01	
1,034	346	637	468	360	1,953	693	U-total (g)	L YIELDS	97 AT SW093		138%				28%			29%			18%		
,	12,394	45,523	16,981	8,796	117,363	27,832	TSS (kg)			4.27E-05	1.82E-01	4.66E+00	_	1.33E-03	1.06E-01	5.53E-01	9.80E-03	1.18E+00	4.67E+00	6.95E-03	6.08E-01	1.32E+00	
<u>' </u>				_				<u> </u>	I		119%				31%			27%			27%		
										2.15E-02	9.04E-01	1.38E+01		1.29E-01	7.16E-01	2.69E+00	4.34E-01	1.23€+00	2.26E+00	2.03E-01	6.85E-01	1.42E+00	
							4				26%				17%			21%			41%		
											No TSS Data in WY-97			97	58.725	296 109	27,603	103,573	257,326	5,065	142.513	227.995	
											No TSS Data in WY-9			1	22%			22%			22%		

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1991 - 1997 AT GS10

	,		,		
		Error		22%	
	Total Suspended Solids	(grams/hr)	1,083,147	116,262	124
		Error		34%	
ED ERROR	U-total	(g/hr)	1.09E+01	7.92E-01	5.40E-03
S AND ASSOCIATE		Error		4 0%	
ESTIMATED LOADS AND ASSOCIATED ERROR	Am-241	(hg/hr)	5.99E+00	3.15E-01	4.28E-04
		Error		43%	
	Pu-239,240	(ng/hr)	3.97E+01	1.48E+00	5 83E-04
	1	Statistic	MAXIMUM	AVERAGE	MINIMEN

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1991 - 1997 AT GS10

SUMMARY OF	SUMMAR! OF ACTINIDE HELDS FOR WATER TEARS 1991 - 1997 AT GS 10	AIER IEARS 1991 -	133/ A1 G310	
	ESTIMATED AVERAGE ANNUAL YIELDS	INUAL YIELDS		
Water Years	Pu-239,240 (µg)	Am-241(µg)	U-total (g)	TSS (kg)
1991 - 1997	281	268	78	
1991 - 1996				20,185

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1994 - 1997 AT GS10

		Error		22%			22%			22%			No TSS Data in WY-97	
	Total Suspended Solids	(grams/hr)	614,771	179,625	1,510	611,685	119,830	2,083	1,083,147	238,706	663		No TSS Data in WY-97	
		Error		40%			26%			17%			27%	
MATED FRACE	U-total	(g/hr)	2.95E+00	8.84E-01	3.54E-02	6.20E+00	1.53E+00	1.84E-01	3.88E+00	1.09E+00	7.75E-02	1.09E+01	8.31E-01	5.40E-03
ESTIMATED LOADS AND ASSOCIATED FREDR		Error		23%			725%			23%			39%	
FSTIMATED O	Am-241	(ng/hr)	1.49E+00	4.05E-01	8.40E-03	2.08E+00	4,41E-01	1.98E-02	2.19E+00	4.30E-01	1.56E-02	5.99E+00	3.79E-01	4.28E-04
1001		Error		20%			22%			44%	-		41%	
	Pu-239,240	(hg/hr)	8.72E+00	2.30E+00	2.25E-02	7.62E+00	1.65E+00	9.78E-02	7.43E+00	1.73E+00	6.77E-04	3.97E+01	2.21E+00	5.83E-04
		Statistic	MAXIMUM	AVERAGE	MINIMUM	MAXIMUM	AVERAGE	MINIMUM	MAXIMUM	AVERAGE	MINIMUM	MAXIMUM	AVERAGE	MINIMUM
		Water Year		1994			1995			1996			1997	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1994 - 1997 AT GS10

) TSS (kg)	09'9	699	11,506	39,674	76,597	36,014	1
	U-total (g)	83	199	30	9/	4	18	96
VINUAL YIELDS	Am-241 (µg)	-	291	93	389	448	302	355
ESTIMATED AVERAGE ANNUAL YIELDS	Pu-239,240 (μg)	3	211	95	558	419	281	401
	Water Year	1991	1992	1993	1994	1995	1996	1997

1	
ı	U,
1	_
П	=
ι	≤
	~
1	~
ŧ	T
ı	Ź
ι	æ
1	~
1	•
1	\sim
1	Ÿ
1	n
ı	
н	m
н	10
1	٠,
ı	-1
4	=
ı	~
н	_
н	,
4	-
1	mi
1	ш.
	TED A
1	_
1	•
1	ACT
1	v
1	-
1	
ı	z
1	=
1	\mathbf{r}
ł	\simeq
1	m
Ţ	居
ı	r
1	\sim
1	U
ı	D
1	<u>_</u>
٦	v
п	OADS FOR V
1	٠,
1	ъ
ŧ	Ä
1	U
п	77
п	~
1	_
1	~
ı	~
1	딆
п	
п	m
ų	121
1	ᄁ
1	
1	~
ı	÷.
ı	m.
1	ъ
1	4
J	J)
1	
ı	Ų,
1	٠
1	5
1	519
1	OR WATER YEARS 199
	5 1991
-	5 1991
-	5 1991 -
-	5 1991 - 1
-	5 1991 - 19
	5 1991 - 198
-	5 1991 - 199
	5 1991 - 1997
	5 1991 - 1997
	S 1991 - 1997 A
	S 1991 - 1997 AT
	S 1991 - 1997 AT
	S 1991 - 1997 AT C
	S 1991 - 1997 AT G:
	S 1991 - 1997 AT GS
	S 1991 - 1997 AT GS0
	S 1991 - 1997 AT GS03
	S 1991 - 1997 AT GS03
	1 - 1997
	S 1991 - 1997 AT GS03
	S 1991 - 1997 AT GS03

		į	m	STIMATED LOADS AND	ESTIMATED LOADS AND ASSOCIATED ERROR			
	Pu-239,240		Am-241		U-total		Total Suspended Solids	
Statistic	(μg/hr)	Error	(µg/hr)	Error	(g/hr)	Error	(grams/hr)	Error
MAXIMUM	1.00€+00		1.45E-01		3.74€+00		13,768	
AVERAGE	4.95E-02	213%	8.43E-03	162%	5,61E-01	31%	3,158	22%
MINIMUM	0.00€+00		0.00E+00		0.00E+00		445	

1992 - 1997 #REF! 131 99	Water Year Days with Flow Pu-239,240 (μg) Am-241(μς	Average Number ESTIMATED AVERAGE ANNUAL YIELDS	SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1991 - 1997 AT GS03
2,061 12,264	μg) U-total (g) TSS (kg)	LDS	

SUMMARY OF ESTIMATED ACTINIDE LOADS FOR WATER YEARS 1992 - 1997 AT GS03

1997	1996	1995	1994	1993	1992	Water Year	
MAXIMUM AVERAGE MINIMUM	MAXIMUM AVERAGE MINIMUM	MAXIMUM AVERAGE MINIMUM	MAXIMUM AVERAGE MINIMUM	MAXIMUM AVERAGE MINIMUM	MAXIMUM AVERAGE MINIMUM	Statistic	
1.00E+00 1.33E-01 0.00E+00	5.90E-02 2.95E-02 0.00E+00	3.15E-01 5.13E-02 1.28E-05	5,31E-02 1,06E-02 0,00E+00	1.53E-02 3.28E-03 0.00E+00	6.02E-01 5.23E-02 0.00E+00	Pu-239,240 (µg/hr)	
87%	32%	334%	247%	97%	87%	Error	
7.36E-02 1.61E-02 0.00E+00	6.71E-03 4.56E-03 2.40E-03	6.96E-02 1.42E-02 0.00E+00	1.37E-02 1.84E-03 0.00E+00	2.66E-03 7.18E-04 0.00E+00	1.45E-01 1.16E-02 0.00E+00	Am-241 (µg/hr)	
133%	10%	134%	216%	°° 44 %	195%	Error	ESTIMATED LOADS AND ASSOCIATED
No ∪ Data	No ∪ Data	4.E+00 1.E+00 2.E-03	5.23E-01 2.75E-01 0.00E+00	3.01E-01 1.02E-01 3.60E-04	3.04E+00 6.72E-01 2.64E-08	U-total (g/hr)	D ASSOCIATED ERROR
No ∪ Data	No ∪ Data	23%	26%	26%	38%	Error	
2.71E+03 1.96E+03 7.40E+02	5.81E+03 5.35E+03 4.89E+03	No TSS Data	No TSS Data	1.38E+04 6.10E+03 4.45E+02	No TSS Data	Total Suspended Solids (grams/hr)	
22%	22%	No TSS Data	No TSS Data	22%	No TSS Data	Error	

SUMMARY OF ACTINIDE YIELDS FOR WATER YEARS 1992 - 1997 AT GS03

	ESTIMATED AVERAGE ANNUAL	ESTIMATED AVERAGE ANNUAL YIELDS	ANNUAL YIELDS	
Water Year	Ри-239,240 (µg)	Am-241 (µg)	U-total (g)	TSS (kg)
1992	195	121	1,556	8,392
1993	15	17	729	20,897
1994	œ	œ	269	
1995	150	205	5,688	•
1996	22	34		5,319
1997	397	209		14,447

